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Abstract
We investigate the applicability of the Jarzynski equality for reconstructing the energy
landscape from force measurements obtained in single molecular unbinding and friction
experiments. We demonstrate that single-well molecular potentials, such as the Lennard-Jones
potential, could be accurately recovered using a reasonable number of force traces (∼100)
obtained for velocities which are experimentally accessible, v ≈ 5–100 nm s−1. The situation
becomes more complex in the presence of potential barriers in the energy profile. These include
the double-well and periodic potentials that we consider here. The slow convergence of the
reconstruction procedure results from a large energy dissipation which occurs during jumps
across the potential barriers. We suggest a modification of the reconstruction procedure which
allows the recovering of the correct shape of the potential wells even in the presence of potential
barriers. However, a reconstruction of the potential shape in the vicinity of potential maxima
requires additional information.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Experiments that probe mechanical forces on small scales
provide a versatile tool for studying molecular adhesion and
friction through the response to the mechanical stress of single
molecules or of nanoscale tips. The probing techniques include
atomic force microscopy (AFM) [1, 2], biomembrane force
probe microscopy [3] and optical tweezers [4, 5]. Examples
of processes that are investigated are the specific binding of
ligand-receptor [6, 7], protein unfolding [8, 9], the mechanical
properties of single polymer molecules such as RNA [10, 11]
and friction on the atomic scale [1, 2]. In these experiments,
one probes forces along a reaction coordinate. One of the main
objectives of the force measurements is to get information on
the free-energy landscape of the system under investigation.
In friction force measurements this aim is usually approached
by comparing the force time series measured in the stick–
slip regime of motion with the results of calculations within
Tomlinson-like models [12–14], which provides an estimation
of the amplitude of surface potential corrugation. However,
this procedure is not unique and it does not give detailed
information on the surface potential. Additional complications
arise from the fact that the results of calculations depend on the
value of the viscous dissipation constant entering the model,
which is also unknown.

Recently, another approach for determining an energy
landscape from force measurements has attracted a lot of
attention, mainly within the framework of single-molecular
force measurements [5, 15–18]. In these experiments, one
measures the spring force, F , versus time or extension, and
unbinding and rebinding events can be identified by the kinks
in the corresponding force traces. A way to relate the free-
energy difference between two thermodynamic states, �G, to
the work, wt , performed in converting one state to another is
through the Jarzynski equality (JE) [15],

e−β�G(z) = 〈e−βwt 〉 (1)

where β = 1/kT , k is Boltzmann’s constant, T is the
absolute temperature and 〈· · ·〉 denotes the ensemble’s average.
The equality allows us to extract equilibrium information
from nonequilibrium measurements—getting static internal
information on the system from its dynamics. The accumulated
work can be found as a path integral of the measured or
calculated force over the reaction coordinate. JE has been
applied to reconstruct the free energy of a pulled substance
from experimentally measured [5, 8, 18] and numerically
simulated [17, 19–23] force traces, in single molecular force
spectroscopy.

However, so far this approach was not applied to the
interpretation of friction force measurements. In this work we
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demonstrate that the use of JE allows us to reconstruct a surface
energy profile defined by a periodic potential from the time
series of frictional forces.

2. Jarzynski’s equality

JE deals with free-energy differences between states described
by different values of the coupling parameter λ. In the context
of force experiments, it gives the free energy of the entire
system at different times. However, the position of the pulling
molecule, or tip, fluctuates, and as a result this is not the
same as the variation of the free energy along the pulling
coordinate, which we are seeking. This problem has been
resolved by Szabo and Hummer, who presented the JE in the
more applicable form [17]:

G0(z) = − 1

β
ln

[∑
t (

〈δ(z−zt )e−βwt 〉
〈e−βwt 〉 )∑

t ( e−βV (z,t)

〈e−βwt 〉 )

]
(2)

where V (z, t) = ks/2(z(t) − λ(t))2 is the harmonic potential
describing the interaction with the pulling device, ks is the
effective elastic constant of the pulling device (for instance, of
the AFM cantilever) and λ(t) = vt is the position of the AFM
support or of the bead, whichs move with a constant velocity v.

Integrating equation (2) over z gives the Jarzynski equality
in equation (1). When putting JE into practice, it is important
to emphasize several aspects of this equality that have to be
taken into account. The main quantity that JE uses is the
averaged weighted work 〈e−βwt 〉 rather than the work itself.
This presents a major difficulty in the practical use of JE, since
the exponential average in equation (2) is dominated by the
rare events which correspond to small values of the work and
emerge from the work probability distribution’s tails. For this
reason the sampling of those trajectories that hold these rare
events is very meaningful [21, 24, 25]. Below, we examine
the sampling problem by discussing the required number of
realizations for a reasonable convergence of the free energy.
Another issue that should be addressed is the dependence of the
required number of realizations on the pulling velocity. Due to
the sampling problems, the further away our system gets from
equilibrium, there will be a price to pay, which is expressed in
the statistics.

3. Langevin equation (LE)

In order to illustrate the procedure for reconstruction of the
free energy, we generate force time series from the Langevin
simulations of single-molecular unbinding and friction. Then
the accumulated work can be calculated by a simple integration
of the force trajectories:

wt = −
∫

F(t) dλ = −
∫

F(t)v dt . (3)

We start from the one-dimensional Langevin equation of
motion for a particle of mass m:

m
d2z(t)

dt2
= −ς

dz(t)

dt
+ �(t) − ∂U(z, t)

∂z
. (4)

Here z(t) is the particle position, U(z, t) is the potential
experienced by the particle, ς is the microscopic friction
coefficient, which is related to the diffusion coefficient D by
ς = kT

D , and �(t) is a fluctuating random force which is
characterized by 〈�(t)〉 = 0 and satisfies the fluctuation-
dissipation relation 〈�(t)�(t ′)〉 = 2ςkT δ(t − t ′), where δ(t)
is the Dirac delta function. Due to the stochastic nature of LE
we obtain a large number of different trajectories for any given
initial condition.

In the case of nanoscale systems considered here, the
effect of inertia on the dynamics is usually negligible, and the
full Langevin description in equation (4) can be reduced to the
over-damped one given by the following equation:

dz(t)

dt
= −β D

(
�(t) − ∂U(z, t)

∂z

)
. (5)

In the calculations presented below, we limit ourselves to this
equation.

The total potential experienced by the pulled molecule or
tip, U(z), includes two contributions: the inherent potential
of the system under study, 	(z), and the potential describing
the interaction with the pulling device, V (z, t). In the case
of unbinding or unfolding of single molecules the potential
	(z) defines the potential energy landscape of the molecule,
while in the framework of friction 	(z) is a periodic potential
which describes an interaction between the driven tip and the
substrate. The force measured in the unbinding and friction
experiments is given by

F(t) = −ks(z(t) − vt). (6)

4. Lennard-Jones potential

In order to demonstrate how the JE works, we start from the
case of the rupture of molecular bonds. Here the potential 	(z)
that is chosen is the Lennard-Jones potential

	LJ(z) = U0

[(
σ

z

)12

− 2

(
σ

z

)6]
(7)

where U0 is the depth of the potential well and σ is the position
of the potential minima. Figure 1 presents an example of the
force time series obtained from a numerical solution of the
Langevin equation (5) with the potential in (7).

The rupture force is quantified by the maximum extension
of the spring, which is followed by rapid recoil to its rest
position. This behavior resembles the stick-to-slip transition
in studies on friction [1, 2]. Rupture of the molecular bonds
occurs by means of thermally assisted escape from the bound
state across an activation barrier. The latter diminishes as
the applied force increases, so the rupture force is determined
by interplay between the rate of escape in the absence of the
external force and the pulling velocity (loading rate) [26, 27].
Thus, the measured forces are not an intrinsic property of the
bound complex, but rather depend on the mechanical setup and
loading rate applied to the system.

In order to extract the molecular information from
the force measurements we collected a number of force
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Figure 1. Force time series obtained from the solution of the
Langevin equation using the Lennard-Jones potential with
U0 = 61.5 pN∗ nm (∼15 kT), σ = 0.3 nm, v = 5 nm s−1,
T = 300 K, D = 530 nm2 s−1 and ks = 2 N m−1.

trajectories, which are similar to that shown in figure 1 and
used in JE (2). The important difference between the original
JE (1) and equation (2) used in our calculation is the presence
of the delta function, δ(z − zt), which allows us to determine
the potential from the trajectories zt . This is done by collecting
the weighted work histograms with z-position intervals, and
averaging them while reducing the elastic term, as described
in (2). The results of the potential reconstruction obtained for
different numbers of trajectories are shown in figure 2.

One can see that already ten trajectories may be sufficient
for an accurate reconstruction of the lower part of the potential
well which is located at z − σ < zc, where zc is the inflection
point of the potential profile that corresponds to the maximal
value of the unbinding force, Fmax = max{−d	(z)/dz} for
z > σ . However, in order to achieve an accurate reconstruction
of the potential above the inflection point, one needs much
better statistics. This is explained by the fact that, for the vast
majority of the unbinding events, the molecule escapes from
the potential well already under the forces which are smaller
than Fmax and, as a result, the region above the inflection
point is probed by rare events only. Simulations of friction
measurements, which are presented below, demonstrate that
this difficulty presents the major problem for the reconstruction
of a surface potential from the friction force traces. Our
calculations with the Lennard-Jones potential show that, for
the low pulling velocity v = 5 nm s−1, the use of a hundred
trajectories allows complete reconstruction of the potential (see
figure 2(b)). The calculations performed with 1000 trajectories
do not show any improvement. Figure 2(c) demonstrates
that, as expected, the accuracy of the potential reconstruction
decreases with an increase in pulling velocity.

5. Double-well potential

Before discussing the application of JE for reconstructing a
periodic potential, let us look at an example of a double-well
potential, 	DW(z), which has already been considered within

Figure 2. Reconstruction of potential from N pulling trajectories
calculated for the Lennard-Jones potential. The solid line (blue
online) and the circles (red online) show the reference Lennard-Jones
potential given by equation (7) and the results of reconstruction
according to equation (2), respectively: (a) number of trajectories,
N = 10 and the pulling velocity, v = 5 nm s−1; (b) N = 100 and
v = 5 nm s−1; (c) N = 100 and v = 500 nm s−1; other parameters as
in figure 1.

the framework of single-molecular unbinding studies [28]:

	DW(z) = (a3z3 + a2z2 + a1z + a0)z. (8)
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Figure 3. Reconstruction of the double-well potential from 100
pulling trajectories. The solid line (blue online), circles (red online)
and triangles (black online) show the reference potential given by
equation (8) and the results of reconstruction according to
equation (2) obtained for two pulling velocities, v = 4 nm s−1 and
0.4 nm s−1, respectively: (a) 	1

DW(z) = (5z3 − 9z2 + 3)z, which
gives a barrier height of ∼7 kT, and the energy of the second well’s
minima of ∼6 kT; (b) 	2

DW(z) = (12z3 − 25z2 + 1)z which gives a
barrier height of ∼15 kT, and the energy of the second well’s minima
of ∼2 kT. The spring constant, ks was taken as 15 pN nm−1 and the
diffusion coefficient, D, was taken as 1 nm2 s−1. Energies are in
units of kT.

Here, contrary to the Lennard-Jones potential, there is a
barrier separating two potential wells characteristic also of a
periodic potential. We have performed calculations for two
double-well potentials, 	1

DW and 	2
DW, with the corresponding

parameters: (i) a3 = 5 kT nm−4, a2 = −9 kT nm−3, a1 =
0, a0 = 3 kT nm−1, and (ii) a3 = 12 kT nm−4, a2 =
−25 kT nm−3, a1 = 0, a0 = 1 kT nm−1. These correspond
to low and moderate potential barriers (see figure 3). Figure 3
shows the results of applying JE (2) for a reconstruction of
the double-well potential obtained for two different pulling
velocities.

A comparison of the results presented in figure 3 with
those obtained for the Lennard-Jones potential (see figure 2)
leads to the following conclusions: (i) in order to recover

Figure 4. PDFs of the work dissipated during forward and backward
cycles for double-well potentials with low and moderate barriers:
	1

DW(z) = (5z3 − 9z2 + 3)z and 	2
DW(z) = (12z3 − 25z2 + 1)z,

respectively. The presented results correspond to two pulling
velocities, v = 4 nm s−1 and 0.4 nm s−1. Energies are in units of kT.
Other parameters are as in figure 3.

a potential profile which includes a barrier, one has to use
significantly lower pulling velocities than in the case of
a single-well potential; (ii) for moderate pulling velocities
the presence of the barrier leads to an increased error in
the reconstructed potential as one drives the system further
away from its original equilibrium state; and (iii) the error
grows with the height of the barrier separating the two
wells. The slow convergence of the reconstruction procedure
originates from strong energy dissipation during jumps across
the potential barrier [25]. The energy dissipation reduces only
slowly with a decrease in the pulling velocity; as a result, even
for low velocities the system is far from the equilibrium.

Figure 4 shows the probability distribution functions
(pdfs) for the energy dissipated during unbinding–rebinding
cycles, Wd, which have been calculated for two kind of the
double-well potentials discussed above. We see that for both
potentials the most probable dissipated energy and the width
of pdfs reduce with a decrease of the pulling velocity. In
the case of the moderate potential barrier of 15 kT even
for a very low pulling velocity, v = 0.4 nm s−1, the most
probable dissipated energy is of the order of 30 kT, indicating
that the force ‘measurements’ are performed far from the
equilibrium. This is different from the system with the low
barrier (∼7 kT), where for v = 0.4 nm s−1 the most probable
dissipated energy becomes as small as 3 kT. As a result
the reconstruction procedure is successfully employed for the
low potential barrier and requires a very large number of
trajectories for the moderate barrier height.

6. Periodic potential

Let us look at experiments where the tip of the friction force
microscope (FFM) is dragged along a substrate surface, and
the measured lateral force exhibits stick–slip motion, as shown
in figure 5. In this case, force traces include many unbinding
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Figure 5. Force time series calculated for the periodic potential given
by equation (2). The inset shows the corresponding tip displacement
versus time, as obtained by the solution of equation (5) with the
periodic potential in equation (9) with g = 0.3 nm, and the rest of the
parameters are as used earlier in figure 1.

kinks. The results presented in this figure show one of the force
traces obtained from the solution of the Langevin equation (5)
with the symmetric periodic potential

	PS(z) = −U0 cos

(
2πz

g

)
(9)

where U0 is the amplitude of the potential corrugation and g
is the lattice constant. Stick–slip motion is observed when the
pulling spring constant is weaker than the effective stiffness of
the surface potential, max{	′′(x)}. Usually, this condition is
written in terms of the Tomlinson parameter, η [29],

η = (2π)2U0

ksg2
> 1 (10)

which in our case equals η = 6.74.
A direct application of JE (2) to the reconstruction of a

potential with a number of barriers, as in the case of a periodic
potential, is not quite practical, since it requires a very large
number of force traces. As we have already noted above, the
slow convergence of the reconstruction procedure originates
from strong energy dissipation during slip events when the tip
crosses the potential barriers [25, 28]. In order to improve
the convergence of reconstructing the potential, we divided
the force time series into time segments corresponding to the
locations of the tip in the wells along the surface potential.
The boundaries between the segments, which are shown by
dashed lines in figure 5, have been chosen at those time points
where the absolute values of the force derivative are maximal.
These points correspond to the jumps (slips) of the tip to the
next potential well. Each time segment was treated separately,
setting the work accumulated at the previous segment to zero.
The surface potential was then obtained using the JE (2) in the
same way as described above for the Lennard-Jones potential.
Small uncertainties in the determination of the boundaries,
which may arise from the limited experimental resolution, do

Figure 6. Reconstruction of the symmetric periodic potential from a
set of 100 trajectories calculated for the pulling velocities
v = 5 nm s−1 (a) and 500 nm s−1 (b). The solid line (blue online)
and shows the reference periodic potential given by equation (9). The
circles (red online) correspond to the reconstructed potential after
filtering as discussed in the text. Other parameters are as in figure 1.

not influence the results. The proposed procedure is justified
for relatively low pulling velocities when, after each slip event,
the tip approaches the equilibrium state before being pulled out
of the well. This means that the rate of relaxation, (2π)2U0

g2η
,

should be higher than the washboard frequency v/g. For
the parameters used here this condition is valid for v <

1200 nm s−1. For an ideal surface it is enough to reconstruct
a potential with one well of the lattice. In order to do this,
one needs only one segment of the stick–slip traces. However,
in reality there might be defects present at the surface and,
in order to identify them and their accurate location and to
characterize their potential, we have to analyze a number of
stick–slip events.

Figure 6 shows the results of the potential reconstruction
obtained from 100 force time series which have been calculated
for two pulling velocities, v = 5 and 500 nm s−1. As in
the case of the Lennard-Jones potential, the lower part of the
periodic potential (below inflection points) is well reproduced
for both velocities. Due to very fast slips of the tip over the
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Figure 7. Reconstruction of the asymmetric periodic potential from a
set of 100 trajectories calculated for the pulling velocities
v = 5 nm s−1. The solid line (blue online) and the circles (red
online) show the reference periodic potential given by equation (11)
and the results of reconstruction after filtering, respectively. Other
parameters as in figure 5.

potential barriers, the downhill slopes are not sampled and
cannot be recovered.

It should be noted that independent treatment of different
time segments of the force time series leads to some
complications. Namely, we recover the correct shape of the
potential wells but the location of the minima on the energy
scale is difficult to determine. We used the following protocol.
(i) the tip position is assumed to start from the local equilibrium
at each time segment, which corresponds, on average, to the
potential minimum. Therefore, except for the first well, we
have the same initial conditions, and as a result the minima of
the recovered wells lie on the same baseline. In figure 6 the first
well was aligned arbitrarily. (ii) We used a filtering procedure
according to which we divided the tip extension coordinate
into intervals and did not included the contribution of those
intervals that were undersampled (due to too short residence
time of the tip). Such filtering depends, of course, on the
pulling velocity.

In order to demonstrate that the proposed procedure works
also for more complex periodic potentials, we consider below
an asymmetric periodic potential (see figure 7) described by
the following equation [30],

	PAS(z) = −U0

ab sin( π
g z) cos( π

g z)

1 + b cos2( π
g z)

(11)

where we assumed a = −0.1 and b = −0.9. Figure 7 shows
the potential which has been reconstructed from a hundred
force traces calculated for the pulling velocity v = 5 nm s−1.
It should be noted that a comparison of the friction traces with
predictions of Tomlinson-like models gives an estimation for
the amplitude of the potential corrugation but does not provide
information on the asymmetry of the potential.

7. Conclusions

We have tested the applicability of JE for a reconstruction
of the energy landscape from force measurements in
single molecular unbinding and friction experiments. We
have demonstrated that single-well molecular potentials (for
instance, the Lennard-Jones potential) could be accurately
recovered using a reasonable number of force traces (∼100)
obtained for accessible experimentally velocities (v ≈
5–100 nm s−1). The situation becomes more complex in
the presence of potential barriers in the energy profile. As
an example, here we considered double-well and periodic
potentials. We have found that for moderate or high potential
barriers (height �10 kT) a direct application of JE leads
to significant errors in the reconstructed potential, even for
pulling velocities as low as v ≈ 5 nm s−1, and a large number
of trajectories. The slow convergence of the reconstruction
procedure results from a large energy dissipation which occurs
during jumps across the potential barriers. We have suggested a
modification of the reconstruction procedure which allows the
recovering of the correct shape of the potential wells even in
the presence of potential barriers. However, a reconstruction of
the potential shape in the vicinity of potential maxima requires
additional information. An improved potential reconstruction
can probably be obtained if one could vary the pulling velocity
along the trajectory, allowing for lower velocities near potential
barriers.
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